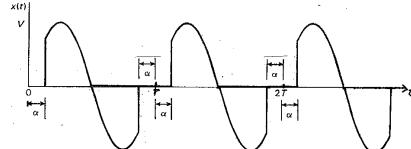
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING


ECEN 3723 Systems I Fall 2002

Midterm Exam #1

Problem 1:

a) Express the signal x(t) in terms of some basic functions (note that $V_1 \neq V_2$).

b) Evaluate the following integral involving the impulse functions
$$\int_{-2}^{2} (e^{-t}u(\lambda)\delta'(\lambda-1) + \sin(t-\lambda)\delta(\lambda-3))d\lambda.$$

Problem 2: Find the Laplace transforms of

- a) $\int \cos(\omega t + \theta) dt$, and
- b) $\sin t e^{-2t} u(t-1)$.

Problem 3:
Find the Inverse Laplace transforms of
a)
$$\frac{s^2e^{-2s}}{(s+1)(s^2+2s+2)}$$
, and

b)
$$\ln \frac{s+a+c}{s+b+c}$$
.

Problem 4

Problem 5:

For a system described by the state space representation given as

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = x_3(t)$$

$$\dot{x}_3(t) = 4x_1 - 2x_2 + 2x_3 + e^{2t}$$

$$y(t) = 2x_1(t) - x_2(t)$$

with zero initials ($x_1(0) = 0$, $x_2(0) = 0$ and $x_3(0) = 0$). Find y(t) .